Simulation for Design of Automated Welding

Abstract
This paper describes a promising approach where simulations were used in the design of real-time control for automated welding. A finite element method has been used for thermal modelling of gas tungsten arc welding on a simplified test object. Measurement data for model calibration and validation was acquired through thermal imaging during weld experiments on test objects of the alloy Fe-316. An optimisation scheme for inverse modelling was employed in the calibration of the distributed weld process model. Frequency weighted model reduction and parametric system identification were applied and evaluated to get a low order model of the single-input single-output dynamics between a simulated weld heat source (actuator) and a sensor. This low order model was then successfully used for controller design where the control signal was weld current and the measured output was a moving spot temperature. Finally, the closed-loop performance was evaluated by simulation of the weld process model showing improved temperature stability relative to open loop.

This publication has 14 references indexed in Scilit: