Abstract
The scaling and squaring method is the most widely used method for computing the matrix exponential, not least because it is the method implemented in MATLAB's {\tt expm} function. The method scales the matrix by a power of 2 to reduce the norm to order 1, computes a Padé approximant to the matrix exponential, and then repeatedly squares to undo the effect of the scaling. We give a new backward error analysis of the method (in exact arithmetic) that employs sharp bounds for the truncation errors and leads to an implementation of essentially optimal efficiency. We also give new rounding error analysis that shows the computed Padé approximant of the scaled matrix to be highly accurate. For IEEE double precision arithmetic the best choice of degree of Padé approximant turns out to be 13, rather than the 6 or 8 used by previous authors. Our implementation of the scaling and squaring method always requires at least two fewer matrix multiplications than {\tt expm} when the matrix norm exceeds 1, which can amoun...

This publication has 15 references indexed in Scilit: