Density-matrix renormalization group studies of metal-halogen chains within a two-band extended Peierls-Hubbard model

Abstract
The phase diagram of halogen-bridged mixed-valence metal complexes (MX) has been studied using a two-band extended Peierls-Hubbard model employing the recently developed density-matrix renormalization group method. We present the energies, charge- and spin-density distributions, bond orders, and charge-charge and spin-spin correlations, for the ground state, for different parameters of the model. The effects of bond alternation and site-diagonal distortion on the ground-state properties are considered in detail. We observe that the site-diagonal distortion plays a significant role in deciding the nature of the ground state of the system. We find that while the charge-density-wave (CDW) and bond-order-wave (BOW) phases can coexist, the CDW and SDW (spin-density-wave) phases are mutually exclusive in most cases. We have also studied the doped MX chains both with and without bond alternation and site-diagonal distortion in the CDW as well as SDW regimes. We find that the additional charges in the polarons and bipolarons for hole doping are confined to a few sites, in the presence of bond alternation and site-diagonal distortion. For electron doping, we find that the additional charge(s) is (are) smeared over the entire chain length, and although the energetics implies a disproportionation of the negatively charged bipolaron, the charge- and spin-density distributions do not reflect this. A positively charged bipolaron disproportionates into two polarons in the SDW region. There is also bond-order evidence for compression of the bond length for the positively charged polaronic and bipolaronic systems and an elongation of the bonds for systems with negatively charged polarons and bipolarons.