Kinetic Ising System in an Oscillating External Field: Stochastic Resonance and Residence-Time Distributions

Abstract
Experimental, analytical, and numerical results suggest that the mechanism by which a uniaxial single-domain ferromagnet switches after sudden field reversal depends on the field magnitude and the system size. Here we report new results on how these distinct decay mechanisms influence hysteresis in a two-dimensional nearest-neighbor kinetic Ising model. We present theoretical predictions supported by numerical simulations for the frequency dependence of the probability distributions for the hysteresis-loop area and the period-averaged magnetization, and for the residence-time distributions. The latter suggest evidence of stochastic resonance for small systems in moderately weak oscillating fields.

This publication has 0 references indexed in Scilit: