Abstract
Let A be an operator from a real Banach space into a real Hilbert space. In this paper we study least squares regularization methods for the ill-posed operator equation A(u) = f using nonlinear nondifferentiable penalty functionals. We introduce a notion of distributional approximation, and use constructs of distributional approximations to establish convergence and stability of approximations of bounded variation solutions of the operator equation. We also show that the results provide a framework for a rigorous analysis of numerical methods based on Euler-Lagrange equations to solve the minimization problem. This justifies many of the numerical implementation schemes of bounded variation minimization that have been recently proposed.

This publication has 18 references indexed in Scilit: