Magnetic trapping of ytterbium and the alkaline-earth metals

Abstract
Atomic ytterbium (Yb), magnesium (Mg), calcium (Ca), and strontium (Sr) possess a simple yet versatile internal level structure and a diversity of naturally abundant fermionic and bosonic isotopes, making these systems ideal for studies of cold collisions and weakly interacting quantum degenerate gases. Unlike alkali-metal atoms, however, Yb, Mg, Ca, and Sr cannot be magnetically trapped in the ground state. We analyze a solution to this problem involving magnetic trapping in a low-lying metastable excited state and predict that significant magnetic trap populations can be obtained via continuous, in situ loading from Yb and Sr 1S01P1 magneto-optical traps.