Microscratch and load relaxation tests for ultra-thin films
- 1 February 1991
- journal article
- Published by Springer Nature in Journal of Materials Research
- Vol. 6 (2) , 407-426
- https://doi.org/10.1557/jmr.1991.0407
Abstract
The microindenter has proven to be a powerful device in the characterization of the mechanical properties of thin films. The machine has both high resolution in the applied load and penetration depth measurements, as well as the versatility to perform different types of testing. The former provides the capability to deal with extremely thin films, while the latter allows for other mechanical properties, in addition to hardness, to be acquired. Four types of tests, namely indentation, scratch, load relaxation, and indentation fatigue tests can currently be conducted using the microindenter via different operating procedures. Only the scratch and load relaxation techniques will be covered in this paper. In a microscratch test, the normal load, tangential load, scratch length, and acoustic emission are monitored simultaneously during an entire scratch process for the purposes of measuring the critical load and studying the failure mechanisms of the deposited films. The adhesion strength, scratch hardness, fracture toughness, and friction are the mechanical properties which are possible to obtain by using this technique. Results from aluminum, carbon, and zirconia coatings will be discussed. The load relaxation test provides information on the creep properties of the films and results in an empirical constitutive relation between the applied stress and plastic strain rate. The creep properties of DC sputtered Al films will be used as an illustration of this.Keywords
This publication has 33 references indexed in Scilit:
- The effect of the interfacial strength on the mechanical properties of aluminum filmsThin Solid Films, 1990
- The cracking and decohesion of thin films on ductile substratesActa Metallurgica, 1989
- Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin filmsJournal of Materials Research, 1988
- The cracking and decohesion of thin filmsJournal of Materials Research, 1988
- Elastic Fracture Mechanics Concepts for Interfacial CracksJournal of Applied Mechanics, 1988
- The mechanical properties of thin films: A reviewThin Solid Films, 1987
- Elasticity and adhesion of thin films by a mechanical resonance methodThin Solid Films, 1987
- Hardness measurement at penetration depths as small as 20 nmPhilosophical Magazine A, 1983
- New method of detecting contact between floating-head and diskIEEE Transactions on Magnetics, 1980
- Acoustic microscope—scanning versionApplied Physics Letters, 1974