Discriminant analysis for recognition of human face images

Abstract
The discrimination power of various human facial features is studied and a new scheme for automatic face recognition (AFR) is proposed. The first part of the paper focuses on the linear discriminant analysis (LDA) of different aspects of human faces in the spatial as well as in the wavelet domain. This analysis allows objective evaluation of the significance of visual information in different parts (features) of the face for identifying the human subject. The LDA of faces also provides us with a small set of features that carry the most relevant information for classification purposes. The features are obtained through eigenvector analysis of scatter matrices with the objective of maximizing between-class variations and minimizing within-class variations. The result is an efficient projection-based feature-extraction and classification scheme for AFR. Each projection creates a decision axis with a certain level of discrimination power or reliability. Soft decisions made based on each of the projections are combined, and probabilistic or evidential approaches to multisource data analysis are used to provide more reliable recognition results. For a medium-sized database of human faces, excellent classification accuracy is achieved with the use of very-low-dimensional feature vectors. Moreover, the method used is general and is applicable to many other image-recognition tasks.

This publication has 14 references indexed in Scilit: