Quantitative analysis of radiation-induced chromosome aberrations

Abstract
We review chromosome aberration modeling and its applications, especially to biodosimetry and to characterizing chromosome geometry. Standard results on aberration formation pathways, randomness, dose-response, proximity effects, transmissibility, kinetics, and relations to other radiobiological endpoints are summarized. We also outline recent work on graph-theoretical descriptions of aberrations, Monte-Carlo computer simulations of aberration spectra, software for quantifying aberration complexity, and systematic links of apparently incomplete with complete or truly incomplete aberrations.

This publication has 36 references indexed in Scilit: