A cell attachment peptide from human C‐reactive protein

Abstract
The serum acute phase reactant, C-reactive protein (CRP), is selectively deposited at sites of tissue damage and degraded by neutrophils into biologically active peptides. A synthetic peptide corresponding to residues 27-38 present in each of the five identical subuints of CRP mediated cell attachment activity in vitro. Although the CRP-derived peptide contains a Tuftsin (TKPR)-like sequence at its amino-terminus, the Tuftsin tetrapeptide itself, as well as several synthetic peptides of CRP, failed to inhibit the cell-attachment activity to the CRP-derived peptide. Peptides containing the sequences responsible for the cell attachment activity of the extracellular matrix proteins, fibronectin (Fn) and laminin, failed to inhibit the CRP-derived peptide cell attachment activity. However the addition of the RGDS and RGDSPASSLP cell-binding peptides of Fn to cells enhanced attachment to the active peptide from CRP. In the converse experiment, the cell-binding peptide of CRP did not influence cell attachment to Fn or laminin. A peptide corresponding to the same stretch of amino acid residues within the homologous Pentraxin, serum amyloid P-component (SAP), displayed nearly identical cell- attachment activity. Several monoclonal antibodies (mAb) specific for the CRP-derived cell-binding peptide neutralized its cell-attachment activity. These mAbs reacted with intact CRP and neutralized the cell-binding activity of CRP itself. The findings suggest that a peptide with cell-binding activity could be generated from the breakdown of the CRP and then contribute directly to cellular events leading to tissue repair.