Abstract
A method for numerically determining diffraction coefficients for arbitrary scattering centers is described. In this method finite bodies possessing scattering centers of the type of interest are first analyzed via the moment method. The various contributions to the total scattered fields are then isolated by solving low-order simultaneous equations obtained by writing expressions for the fields in terms of unknown diffraction coefficients. The method yields numerical diffraction coefficients in angular sectors where previous methods fail (e.g., near grazing angles), and can be applied in the context of measured as well as simulated scattering data. Finite frequency-selective surfaces are shown to be amenable to analysis with ray-optics techniques, and several two-dimensional examples are given with comparisons to far- and near-field moment method results.

This publication has 8 references indexed in Scilit: