Closed Form of Infinite Series Used in Some Atomic Integrals Containing r12, r13, and r23
- 15 April 1965
- journal article
- research article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 42 (8) , 2959-2961
- https://doi.org/10.1063/1.1703269
Abstract
In an excellent scheme recently developed for evaluating the integral met in the calculation of correlated atomic wavefunctions, certain functions required in the computational scheme had to be evaluated by an infinite series expansion. As many as 40 terms may be needed in each of the three required infinite summations to get eight significant figures. We give a closed form expression for such functions avoiding all infinite sums. The new result is very compact and avoids the previous difficulty of numerical stability.
Keywords
This publication has 3 references indexed in Scilit:
- Many-Electron Theory of Atoms and Molecules. V. First-Row Atoms and Their IonsThe Journal of Chemical Physics, 1964
- On the Calculation of Some Atomic Integrals Containing Functions of r12, r13, and r23The Journal of Chemical Physics, 1963
- THE DERIVATION OF CERTAIN HIGH ORDER SAMPLING PRODUCT MOMENTS FROM A NORMAL POPULATIONBiometrika, 1930