Correcting Propagation Effects in C-Band Polarimetric Radar Observations of Tropical Convection Using Differential Propagation Phase

Abstract
A propagation correction algorithm utilizing the differential propagation phase (ϕdp) was developed and tested on C-band polarimetric radar observations of tropical convection obtained during the Maritime Continent Thunderstorm Experiment. An empirical procedure was refined to estimate the mean coefficient of proportionality a (b) in the linear relationship between ϕdp and the horizontal (differential) attenuation throughout each radar volume. The empirical estimates of these coefficients were a factor of 1.5–2 times larger than predicted by prior scattering simulations. This discrepancy was attributed to the routine presence of large drops [e.g., differential reflectivity Zdr ≥ 3 dB] within the tropical convection that were not included in prior theoretical studies. Scattering simulations demonstrated that the coefficients a and b are nearly constant for small to moderate sized drops (e.g., 0.5 ≤ Zdr ≤ 2 dB; 1 ≤ diameter D0 < 2.5 mm) but actually increase with the differential reflectivity for d... Abstract A propagation correction algorithm utilizing the differential propagation phase (ϕdp) was developed and tested on C-band polarimetric radar observations of tropical convection obtained during the Maritime Continent Thunderstorm Experiment. An empirical procedure was refined to estimate the mean coefficient of proportionality a (b) in the linear relationship between ϕdp and the horizontal (differential) attenuation throughout each radar volume. The empirical estimates of these coefficients were a factor of 1.5–2 times larger than predicted by prior scattering simulations. This discrepancy was attributed to the routine presence of large drops [e.g., differential reflectivity Zdr ≥ 3 dB] within the tropical convection that were not included in prior theoretical studies. Scattering simulations demonstrated that the coefficients a and b are nearly constant for small to moderate sized drops (e.g., 0.5 ≤ Zdr ≤ 2 dB; 1 ≤ diameter D0 < 2.5 mm) but actually increase with the differential reflectivity for d...

This publication has 0 references indexed in Scilit: