2-Chloro-2′-deoxyadenosine induces apoptosis through the Fas/Fas ligand pathway in human leukemia cell line MOLT-4

Abstract
The mechanism of apoptosis induced by 2-chloro-2′-deoxyadenosine (2CdA) in human leukemia cell line MOLT-4 was investigated. 2CdA induced increases of 3′-OH ends of genomic DNA, ladder-like DNA fragmentation and phosphatidylserine translocation to the outer membrane, which are apoptotic characteristics. These apoptotic phenomena induced by 2CdA were inhibited by cycloheximide (CHX; a protein synthesis inhibitor), deoxycytidine (dC; a substrate of deoxycytidine kinase), acetyl Ile-Glu-Thr-Asp aldehyde (Ac-IETD-CHO; a caspase-8 inhibitor) and acetyl Asp-Glu-Val-Asp aldehyde (Ac-DEVD-CHO; a caspase-3 inhibitor). The protein synthesis-dependent expression of Fas and Fas ligand (Fas-L) was detected by treatment with 2CdA. The proteolytic processing of procaspases-8 and -3 to produce active fragments, caspases-8 (p18) and -3 (p17), respectively, was observed after treatment with 2CdA, and suppressed by cycloheximide. Increases in the activities of caspases-8 and -3 were observed after 2CdA treatment. Their activation was also dependent on protein synthesis. These results indicated that 2CdA-induced apoptosis was triggered by phosphorylation of 2CdA followed by the protein synthesis-dependent expression of Fas and Fas-L and activation of caspases-8 and -3.

This publication has 40 references indexed in Scilit: