Quantum Process Tomography of a Controlled-NOT Gate

Abstract
We demonstrate complete characterization of a two-qubit entangling process—a linear optics controlled-not gate operating with coincident detection—by quantum process tomography. We use a maximum-likelihood estimation to convert the experimental data into a physical process matrix. The process matrix allows an accurate prediction of the operation of the gate for arbitrary input states and a calculation of gate performance measures such as the average gate fidelity, average purity, and entangling capability of our gate, which are 0.90, 0.83, and 0.73, respectively.