Properties of Diffraction Grating Anomalies
- 1 July 1973
- journal article
- research article
- Published by Taylor & Francis in Optica Acta: International Journal of Optics
- Vol. 20 (7) , 533-547
- https://doi.org/10.1080/713818801
Abstract
Values provided by three different theories of the diffraction by gratings are compared with measurements made at millimetre wavelengths. The results based on the integral equation method of Pavageau and Bousquet give the best agreement with the experimentally-determined shapes of Wood anomalies. The wavelength dependence of P polarization anomalies is considered. Some properties of first-order P polarization resonance anomalies are demonstrated. The existence of second-order P resonances is shown. Second, third and fourth-order S polarization resonance anomalies have been found to occur for sinusoidal profile gratings at groove depths given by a simple formula. These anomalies cause large changes in grating efficiency to occur in very short wavelength intervals, and so might prove useful in spectroscopy.Keywords
This publication has 13 references indexed in Scilit:
- Diffraction of a Parallel- and Perpendicular-Polarized Wave from an Echelette Grating*Journal of the Optical Society of America, 1972
- Anomalous Behavior of Blazed GratingsApplied Optics, 1972
- Diffraction par un Réseau Conducteur Nouvelle Méthode de RésolutionOptica Acta: International Journal of Optics, 1970
- Quelques Propriétés des Réseaux MétalliquesOptica Acta: International Journal of Optics, 1967
- A New Theory of Wood’s Anomalies on Optical GratingsApplied Optics, 1965
- Diffraction Anomalies in Grating SpectrophotometersApplied Optics, 1962
- Parallel Diffraction Grating Anomalies*Journal of the Optical Society of America, 1952
- Zur Theorie der anomalen Reflexion von optischen StrichgitternThe European Physical Journal A, 1942
- Zur Theorie der Intensitätsanomalien der BeugungAnnalen der Physik, 1938
- On the dynamical theory of gratingsProceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1907