Soliton on a disordered lattice
- 1 February 1993
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review E
- Vol. 47 (2) , 1423-1426
- https://doi.org/10.1103/physreve.47.1423
Abstract
A stochastic version of the lattice nonlinear Schrödinger equation, allowing treatment by means of the inverse-scattering technique and having an exact one-soliton solution, is introduced. It is shown that such a model is a useful tool for investigation of a wide class of nonlinear lattices affected by spatiotemporally random forces. A number of the most important statistical characteristics of soliton dynamics governed by such models can be evaluated without any assumption about the smallness of random perturbations. The problem is studied in detail in two limiting cases: small and large intensities of fluctuations of a stochastic term in the integrable equation.Keywords
This publication has 5 references indexed in Scilit:
- Properties of the nonlinear Schrödinger equation on a latticePhysical Review A, 1991
- Dynamics of solitons under random perturbationsPhysics Reports, 1988
- Soliton propagation in nonuniform mediaPhysical Review A, 1985
- Solitons in Nonuniform MediaPhysical Review Letters, 1976
- Nonlinear differential−difference equationsJournal of Mathematical Physics, 1975