Radon transform and pattern functions in quantum tomography
Preprint
- 12 June 1997
Abstract
The two-dimensional Radon transform of the Wigner quasiprobability is introduced in canonical form and the functions playing a role in its inversion are discussed. The transformation properties of this Radon transform with respect to displacement and squeezing of states are studied and it is shown that the last is equivalent to a symplectic transformation of the variables of the Radon transform with the contragredient matrix to the transformation of the variables in the Wigner quasiprobability. The reconstruction of the density operator from the Radon transform and the direct reconstruction of its Fock-state matrix elements and of its normally ordered moments are discussed. It is found that for finite-order moments the integration over the angle can be reduced to a finite sum over a discrete set of angles. The reconstruction of the Fock-state matrix elements from the normally ordered moments leads to a new representation of the pattern functions by convergent series over even or odd Hermite polynomials which is appropriate for practical calculations. The structure of the pattern functions as first derivatives of the products of normalizable and nonnormalizable eigenfunctions to the number operator is considered from the point of view of this new representation.Keywords
All Related Versions
- Version 1, 1997-06-12, ArXiv
- Published version: Journal of Modern Optics, 44 (11-12), 2293.
This publication has 0 references indexed in Scilit: