Quantum Monte Carlo with Directed Loops
Preprint
- 12 September 2002
Abstract
We introduce the concept of directed loops in stochastic series expansion and path integral quantum Monte Carlo methods. Using the detailed balance rules for directed loops, we show that it is possible to smoothly connect generally applicable simulation schemes (in which it is necessary to include back-tracking processes in the loop construction) to more restricted loop algorithms that can be constructed only for a limited range of Hamiltonians (where back-tracking can be avoided). The "algorithmic discontinuities" between general and special points (or regions) in parameter space can hence be eliminated. As a specific example, we consider the anisotropic S=1/2 Heisenberg antiferromagnet in an external magnetic field. We show that directed loop simulations are very efficient for the full range of magnetic fields (zero to the saturation point) and anisotropies. In particular for weak fields and anisotropies, the autocorrelations are significantly reduced relative to those of previous approaches. The back-tracking probability vanishes continuously as the isotropic Heisenberg point is approached. For the XY-model, we show that back-tracking can be avoided for all fields extending up to the saturation field. The method is hence particularly efficient in this case. We use directed loop simulations to study the magnetization process in the 2D Heisenberg model at very low temperatures. For LxL lattices with L up to 64, we utilize the step-structure in the magnetization curve to extract gaps between different spin sectors. Finite-size scaling of the gaps gives an accurate estimate of the transverse susceptibility in the thermodynamic limit: chi_perp = 0.0659 +- 0.0002.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: