A real-time electrical impedance tomography system for clinical use-design and preliminary results

Abstract
An instrument is described which produces images of the electrical impedance distribution within the body at a rate of 25 frames per second, allowing lung ventilation and lung perfusion to be observed in real time. The instrument makes impedance measurements using an array of 16 electrodes on the surface of the body, and reconstructs the images using a weighted backprojection technique. The design of the data acquisition electronics and the reconstruction and display processor are described. Some preliminary in vitro and in vivo results from the system are presented.

This publication has 27 references indexed in Scilit: