Off-axis vortices in trapped Bose condensed gases: angular momentum and frequency splitting

Abstract
We consider non centered vortices and their arrays in a cylindrically trapped Bose-Einstein condensate at zero temperature. We study the kinetic energy and the angular momentum per particle in the Thomas Fermi regime and their dependence on the distance of the vortices from the center of the trap. Using a perturbative approach with respect to the velocity-field of the vortices, we calculate to first order the frequency shift of the collective low-lying excitations due to the presence of an off-center vortex or a vortex array, and compare these results with predictions which would be obtained by the application of a simple sum-rule approach, previously found to be very successful for centered vortices. It turns out that the simple sum-rule approach fails for off-centered vortices.

This publication has 0 references indexed in Scilit: