Validity of approximate methods in molecular scattering: Thermal HCl–He collisions

Abstract
Accurate close coupling scattering calculations are presented for thermal energy HCl–He collisions. The interaction potential is obtained from the Gordon–Kim electron gas model, adjusted to have the correct long‐range multipole form. A variety of phenomenological cross sections are computed from the close coupling S matrix, and these are compared with results from several commonly employed approximate methods. In particular, it is found that the total integral, total differential, and gas kinetic cross sections are accurately predicted by the central field approximation which retains just the spherical average of the interaction. Integral inelastic cross sections are represented quite accurately by the coupled states approximation of McGuire and Kouri, but only qualitatively by the effective potential method of Rabitz. Pressure broadening cross sections from the close coupling calculation are in much better agreement with experiment than either Anderson theory calculations or the classical trajectory study of Gordon. NMR spin–lattice relaxation cross sections are also presented.