Abstract
Imbibition phenomena have been widely used experimentally and theoretically to study the kinetic roughening of interfaces. We critically discuss the existing experiments and some associated theoretical approaches on the scaling properties of the imbibition front, with particular attention to the conservation law associated to the fluid, to problems arising from the actual structure of the embedding medium, and to external influences such as evaporation and gravity. Our main conclusion is that the scaling of moving interfaces includes many crossover phenomena, with competition between the average capillary pressure gradient and its fluctuations setting the maximal lengthscale for roughening. We discuss the physics of both pinned and moving interfaces and the ability of the existing models to account for their properties.

This publication has 0 references indexed in Scilit: