A note on simultaneous polynomial approximation of exponential functions
- 1 December 1974
- journal article
- research article
- Published by Cambridge University Press (CUP) in Bulletin of the Australian Mathematical Society
- Vol. 11 (3) , 333-338
- https://doi.org/10.1017/s0004972700043963
Abstract
Let α1, …, αmbe distinct complex numbers and τ(1), …, τ(m) be non-negative integers. We obtain conditions under which the functions form a perfect system, that is, for every set ρ(1), …, ρ(m) of non-negative integers, there are polynomialsa1(z), …,am(z) with respective degrees exactly ρ(1)−1, …, ρ(m)−1, such that the function has a zero of order at least ρ(1) + … + ρ(m)−1 at the origin. Moreover, subject to the evaluation of certain determinants, we give explicit formulae for the approximating polynomialsa1(z), …,am(z).Keywords
This publication has 4 references indexed in Scilit:
- Perfect approximation of functionsBulletin of the Australian Mathematical Society, 1971
- On Some Diophantine Inequalities Involving the Exponential FunctionCanadian Journal of Mathematics, 1965
- Zur Approximation der Exponentialfunktion und des Logarithmus. Teil II.Journal für die reine und angewandte Mathematik (Crelles Journal), 1932
- Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I.Journal für die reine und angewandte Mathematik (Crelles Journal), 1932