Contractile properties of bundles of fiber segments from skeletal muscles

Abstract
Our purpose was to determine whether contractile properties of bundles of skeletal muscle fiber segments were significantly different from those of bundles of intact fibers. In frog muscles, the only difference between the contractile properties of fiber segments and intact fibers was a lower maximum velocity of shortening (Vo) for the fiber segments. In mammalian muscles, the contraction time (TPT), relaxation time (RT1/2), and maximum tetanus tension (Po) of bundles of fiber segments were not different from those of intact fibers, but the rate of tension development (dP/dt), twitch-to-tetanus ratio (Pt/Po) and Vo were lower. The lower dP/dt and Pt/Po resulted from increased compliance due to damaged sarcomeres near cut ends. Within 4-9 mm of a cut end, membrane potentials were less than control values, and sarcomeres lengthened during a fixed-end contraction. after the length of fiber segments was corrected for the exact portion that was not shortening, the Vo of fiber segments was not different from that of intact fibers. We conclude that valid estimates of contractile properties can be obtained from bundles of skeletal muscle fiber segments.