Axisymmetric bubble or drop in a uniform flow
- 1 July 1981
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 108, 89-100
- https://doi.org/10.1017/s0022112081002000
Abstract
The deformation of an axisymmetric bubble or drop in a uniform flow of constant velocity U is computed numerically. The flow is assumed to be inviscid and incompressible. The problem is formulated as a nonlinear integrodifferential system of equations for the bubble surface and for the potential function on the surface. These equations are discretized and the resulting algebraic system is solved by Newton's method. For U = 0 the bubble is a sphere. The results show that as U increases the bubble becomes oblate, spreading out in the direction normal to the flow and contracting in the direction of the flow. Then the poles get pushed in and ultimately they touch each other. The results also show that there is a maximum value of the Weber number above which there is no steady axially symmetric bubble. This value is somewhat smaller than the approximate value obtained by Moore (1965) but close to that found by El Sawi (1974). We also compute the added mass, the drag on the bubble, and its terminal velocity in a gravitational field, for large Reynolds numbers.Keywords
This publication has 7 references indexed in Scilit:
- Distorted gas bubbles at large Reynolds numberJournal of Fluid Mechanics, 1974
- Selection of current soviet papers of interest to chemical engineersChemical Engineering Science, 1971
- Viscous drag in steady potential flow past a bubbleChemical Engineering Science, 1970
- The motion of a spherical liquid drop at high Reynolds numberJournal of Fluid Mechanics, 1968
- The velocity of rise of distorted gas bubbles in a liquid of small viscosityJournal of Fluid Mechanics, 1965
- The boundary layer on a spherical gas bubbleJournal of Fluid Mechanics, 1963
- The rise of a gas bubble in a viscous liquidJournal of Fluid Mechanics, 1959