Defective Cardiac Ryanodine Receptor Regulation During Atrial Fibrillation

Abstract
Background— Ca2+ leak from the sarcoplasmic reticulum (SR) may play an important role in triggering and/or maintaining atrial arrhythmias, including atrial fibrillation (AF). Protein kinase A (PKA) hyperphosphorylation of the cardiac ryanodine receptor (RyR2) resulting in dissociation of the channel-stabilizing subunit calstabin2 (FK506-binding protein or FKBP12.6) causes SR Ca2+ leak in failing hearts and can trigger fatal ventricular arrhythmias. Little is known about the role of RyR2 dysfunction in AF, however. Methods and Results— Left and right atrial tissue was obtained from dogs with AF induced by rapid right atrial pacing (n=6 for left atrial, n=4 for right atrial) and sham instrumented controls (n=6 for left atrial, n=4 for right atrial). Right atrial tissue was also collected from humans with AF (n=10) and sinus rhythm (n=10) and normal cardiac function. PKA phosphorylation of immunoprecipitated RyR2 was determined by back-phosphorylation and by immunoblotting with a phosphospecific antibody. Th...