Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H–SiC and sapphire substrates

Abstract
High quality Al0.15Ga0.85N/GaN heterostructures have been fabricated on 6H–SiC and sapphire substrates by metalorganic vapor phase epitaxy (MOVPE). A temperature independent mobility, indicative of the presence of a two‐dimensional electron gas (2DEG), was observed in all samples below 80 K. The highest low temperature 2DEG mobility, 7500 cm2/V s, was measured in AlGaN/GaN grown on 6H–SiC; the sheet carrier density was 6×1012 cm−2. Strong, well resolved, Shubnikov–de Haas oscillations were observed in fields as low as 3 T and persisted to temperatures as high as 15 K. Hall effect measurements also revealed the presence of well‐defined plateaus in the Hall resistance. The high quality 2DEG properties of the AlGaN/GaN heterostructures grown on 6H–SiC are attributed to the absence of significant parallel conduction paths in the material.

This publication has 0 references indexed in Scilit: