Abstract
Many insects gain directional information from the polarization pattern of the sky. Polarization vision is mediated by the specialized ommatidia of the dorsal rim area of the compound eye, which contains highly polarization-sensitive photoreceptors. In crickets Gryllus campestris, polarized light information conveyed by the dorsal rim ommatidia was found to be processed by polarization-opponent interneurones (POL-neurones). In this study, a field-proof opto-electronic model of a POL-neurone was constructed that implements the physiological properties of cricket POL-neurones as measured by previous electrophysiological experiments in the laboratory. Using this model neurone, both the strength of the celestial polarization signal and the directional information available to POL-neurones were assessed under a variety of meteorological conditions. We show that the polarization signal as experienced by cricket POL-neurones is very robust, both because of the special filtering properties of these neurones (polarization-antagonism, spatial low-pass, monochromacy) and because of the relatively stable e-vector pattern of the sky.