Magnetic field induced localization in a two-dimensional superconducting wire network

Abstract
We report transport measurements on superconducting wire networks which provide the first experimental evidence of a new localization phenomenon induced by magnetic field on a 2D periodic structure. In the case of a superconducting wave function this phenomenon manifests itself as a depression of the network critical current and of the superconducting transition temperature at a half magnetic flux quantum per tile. In addition, the strong broadening of the resistive transition observed at this field is consistent with enhanced phase fluctuations due to this localization mechanism.

This publication has 0 references indexed in Scilit: