A laboratory study of the minimum wind speed for wind wave generation

Abstract
The minimum wind speed for wind wave generation has been investigated in a laboratory wind-wave flume using a sensitive slope gauge to measure the initial wavelets about 10 μm high. The growth at very low wind speeds was higher than predicted by the viscous shear-flow instability theory. Assuming that the growth is exponential, the inception wind speed at which the growth rate becomes positive can be defined. It occurred at (friction velocity)u*≈ 2 cm/s, somewhat lower than theu*≈ 4–5 cm/s predicted by shear-flow instability theory. However, the observed growth rates were close to the theory at higher wind speeds when the waves were higher than 1 mm. The effect of temperature on the wind speed at which the waves become readily visible is shown to be appreciable and in keeping with the temperature dependent viscous damping. Other sources of growth are discussed. Our estimates show that the Phillips resonance mechanism might be sufficiently effective to generate the observed growth at very low wind speeds.

This publication has 13 references indexed in Scilit: