Specificity of tumor necrosis factor toxicity for human mammary carcinomas relative to normal mammary epithelium and correlation with response to doxorubicin.
- 1 July 1988
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 85 (13) , 4740-4744
- https://doi.org/10.1073/pnas.85.13.4740
Abstract
By using a unique short-term culture system capable of growing both normal and malignant breast epithelial tissue, human recombinant tumor necrosis factor (TNF) showed preferential cytotoxicity to malignant cells as compared to the corresponding nonmalignant cells. Most of the malignant specimens were sensitive to TNF with 13 of 18 specimens showing 90% inhibition of clonal growth (ID90) by less than 500 units of TNF per ml of culture fluid. In contrast, all 13 nonmalignant specimens tested clustered at the resistant end of the TNF response spectrum, with ID90 values being greater than 5000 units of TNF per ml of culture fluid. This differential sensitivity to TNF was seen in three cases in which malignant and nonmalignant breast epithelial tissues from the same patient were studied. To investigate the mechanism of resistance to TNF by normal cells, the presence of receptors for TNF was determined. Five of six cultures showed specific binding of 125I-labeled TNF and there was no relationship between the degree of resistance and the degree of specific binding. Simultaneous comparison of tumor responsiveness to doxorubicin and TNF revealed a positive correlation in ID90 values; these results may have important implications for the clinical use of TNF in cancer patients heavily pretreated with doxorubicin.This publication has 21 references indexed in Scilit:
- A high molecular weight component of the human tumor necrosis factor receptor is associated with cytotoxicity.Proceedings of the National Academy of Sciences, 1987
- CURES AND PARTIAL REGRESSION OF MURINE AND HUMAN-TUMORS BY RECOMBINANT HUMAN-TUMOR NECROSIS FACTOR1986
- Fibroblast growth enhancing activity of tumor necrosis factor and its relationship to other polypeptide growth factors.The Journal of Experimental Medicine, 1986
- Recombinant Human Tumor Necrosis Factor-α: Effects on Proliferation of Normal and Transformed Cells in VitroScience, 1985
- Tumor Necrosis Factor (TNF)Science, 1985
- Molecular Cloning of the Complementary DNA for Human Tumor Necrosis FactorScience, 1985
- Human tumor necrosis factor produced by human B-cell lines: synergistic cytotoxic interaction with human interferon.Proceedings of the National Academy of Sciences, 1983
- CLONAL PROLIFERATION OF CULTURED NONMALIGNANT AND MALIGNANT HUMAN-BREAST EPITHELIA1981
- An endotoxin-induced serum factor that causes necrosis of tumors.Proceedings of the National Academy of Sciences, 1975