Comparison of the Land-Surface Interaction in the ECMWF Reanalysis Model with the 1987 FIFE Data

Abstract
Data from the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment for the summer season of 1987 are used to assess the land-surface interaction of the ECMWF reanalysis. In comparison with an earlier study, using the 1992 ECMWF operational model, the land-surface interaction is greatly improved. The bias in the incoming solar radiation has been removed, although there seems to be a small low bias in the incoming longwave, which is significant at night. The four-layer soil moisture model depicts the seasonal cycle well, and the root zone is recharged satisfactorily after major rain events. Consequently, the evaporative fraction (EF) over the season is now generally quite good. There is, however, a low bias in EF in June and high bias in October, which is probably due to the absence of a seasonal cycle in the model vegetation. The evaporative fraction also appears too high in the model just after rainfall. It also appears that the model lacks a realistic seasonal... Abstract Data from the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment for the summer season of 1987 are used to assess the land-surface interaction of the ECMWF reanalysis. In comparison with an earlier study, using the 1992 ECMWF operational model, the land-surface interaction is greatly improved. The bias in the incoming solar radiation has been removed, although there seems to be a small low bias in the incoming longwave, which is significant at night. The four-layer soil moisture model depicts the seasonal cycle well, and the root zone is recharged satisfactorily after major rain events. Consequently, the evaporative fraction (EF) over the season is now generally quite good. There is, however, a low bias in EF in June and high bias in October, which is probably due to the absence of a seasonal cycle in the model vegetation. The evaporative fraction also appears too high in the model just after rainfall. It also appears that the model lacks a realistic seasonal...

This publication has 0 references indexed in Scilit: