Molded porous poly (L-lactide) membranes for guided bone regeneration with enhanced effects by controlled growth factor release
- 13 February 2001
- journal article
- research article
- Published by Wiley in Journal of Biomedical Materials Research
- Vol. 55 (3) , 295-303
- https://doi.org/10.1002/1097-4636(20010605)55:3<295::aid-jbm1017>3.0.co;2-w
Abstract
The aim of this study was to develop platelet-derived growth factor (PDGF-BB) loaded moldable porous poly (L-lactide) (PLLA)-tricalcium phosphate (TCP) membranes for guided bone regeneration (GBR) therapy. The membranes were designed to fit various types of bone defect sites. PDGF-BB-dissolved PLLA-TCP in methylene chloride-ethyl acetate solution was cast on a dome shaped metallic mold to fabricate a model membrane. The release rate of PDGF-BB, the osteoblast attachment test, and guided bone regeneration potential were evaluated with PDGF-BB-loaded PLLA-TCP membranes. Regular pores were generated throughout the membrane mainly due to phase inversion of PLLA-methylene chloride-ethyl acetate solution. A therapeutic amount of PDGF-BB was released from the membrane. The release rate could be controlled by varying the initial loading content of PDGF-BB. A significant amount of cells attached onto the PDGF-BB-loaded membrane rather than onto the unloaded membrane. Dome shaped bone formation was achieved in rabbit calvaria at 4 weeks. This indicated that restoration of bone defects to the bone's original shape can be made possible by using molded membranes, which guide bone regeneration along with providing sufficient spaces. Bone forming efficiency was increased remarkably due to PDGF-BB release from PLLA-TCP membranes. These results suggested that the PDGF-BB releasing molded PLLA-TCP membrane may potentially improve GBR efficiency in various types of bone defects. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res 55: 295–303, 2001Keywords
This publication has 30 references indexed in Scilit:
- Human osteoblast response in vitro to platelet-derived growth factor and transforming growth factor-β delivered from controlled-release polymer rodsBiomaterials, 1997
- Polypeptide growth factors: targeted delivery systemsBiomaterials, 1997
- Porous poly(l-lactide) membranes for guided tissue regeneration and controlled drug delivery: membrane fabrication and characterizationJournal of Controlled Release, 1997
- Migration of Human Gingival Fibroblasts Over Guided Tissue Regeneration Barrier MaterialsThe Journal of Periodontology, 1996
- Effects of different osteopromotive membrane porosities on experimental bone neogenesis in ratsBiomaterials, 1996
- Periodontal Repair in Dogs: Space Provision by Reinforced ePTFE Membranes Enhances Bone and Cementum Regeneration in Large Supraalveolar DefectsThe Journal of Periodontology, 1994
- Localized ridge augmentation using guided tissue regeneration in humans. A report of nine cases.Clinical Oral Implants Research, 1993
- Migration of epithelial cells on materials used in guided tissue regenerationJournal of Periodontal Research, 1990
- New Attachment Formation Following Controlled Tissue Regeneration Using Biodegradable MembranesThe Journal of Periodontology, 1988
- Collagen membranes prevent the apical migration of epithelium during periodontal wound healingJournal of Periodontal Research, 1987