Abstract
This paper examines the influence of multisensor data fusion on the automatic extraction of topographic objects from SPOT panchromatic imagery. The suitability of various grey level co-occurrence based texture measures, as well as different pixel windows is also investigated. It is observed that best results are obtained with a 3 2 3 pixel window and the texture measure homogeneity. The synthetic texture image derived together with a Landsat Thematic Mapper (TM) imagery are then fused to the SPOT data using the additional channel concept. The object feature base is expanded to include both spectral and spatial features. A maximum likelihood classification approach is then applied. It is demonstrated that the segmentation of topographic objects is significantly improved by fusing the multispectral and texture information.

This publication has 8 references indexed in Scilit: