Abstract
We present here a brief description of a numerical technique suitable for solving axisymmetric (or two-dimensional) free-boundary problems of fluid mechanics. The technique is based on a finite-difference solution of the equations of motion on an orthogonal curvilinear coordinate system, which is also constructed numerically and always adjusted so as to fit the current boundary shape. The overall solution is achieved via a global iterative process, with the condition of balance between total normal stress and the capillary pressure at the free boundary being used to drive the boundary shape to its ultimate equilibrium position.

This publication has 18 references indexed in Scilit: