Handwritten character classification using nearest neighbor in large databases
- 1 January 1994
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE)
- Vol. 16 (9) , 915-919
- https://doi.org/10.1109/34.310689
Abstract
Shows that systems built on a simple statistical technique and a large training database can be automatically optimized to produce classification accuracies of 99% in the domain of handwritten digits. It is also shown that the performance of these systems scale consistently with the size of the training database, where the error rate is cut by more than half for every tenfold increase in the size of the training set from 10 to 100,000 examples. Three distance metrics for the standard nearest neighbor classification system are investigated: a simple Hamming distance metric, a pixel distance metric, and a metric based on the extraction of penstroke features. Systems employing these metrics were trained and tested on a standard, publicly available, database of nearly 225,000 digits provided by the National Institute of Standards and Technology. Additionally, a confidence metric is both introduced by the authors and also discovered and optimized by the system. The new confidence measure proves to be superior to the commonly used nearest neighbor distance.Keywords
This publication has 13 references indexed in Scilit:
- Trading MIPS and memory for knowledge engineeringCommunications of the ACM, 1992
- Instance-based learning algorithmsMachine Learning, 1991
- Parallel distance transforms on pyramid machines: Theory and implementationSignal Processing, 1990
- COMPUTER RECOGNITION OF TOTALLY UNCONSTRAINED HANDWRITTEN ZIP CODESInternational Journal of Pattern Recognition and Artificial Intelligence, 1987
- On the Recognition of Printed Characters of Any Font and SizePublished by Institute of Electrical and Electronics Engineers (IEEE) ,1987
- Contour FillingPublished by Springer Nature ,1982
- Elastic Matching of Line DrawingsPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1981
- Euclidean distance mappingComputer Graphics and Image Processing, 1980
- Distance functions on digital picturesPattern Recognition, 1968
- Nearest neighbor pattern classificationIEEE Transactions on Information Theory, 1967