The design and characterization of two proteins with 88% sequence identity but different structure and function
- 17 July 2007
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 104 (29) , 11963-11968
- https://doi.org/10.1073/pnas.0700922104
Abstract
To identify a simplified code for conformational switching, we have redesigned two natural proteins to have 88% sequence identity but different tertiary structures: a 3-α helix fold and an α/β fold. We describe the design of these homologous heteromorphic proteins, their structural properties as determined by NMR, their conformational stabilities, and their affinities for their respective ligands: IgG and serum albumin. Each of these proteins is completely folded at 25°C, is monomeric, and retains the native binding activity. The complete binding epitope for both ligands is encoded within each of the proteins. The IgG-binding epitope is functional only in the α/β fold, and the albumin-binding epitope is functional only in the 3-α fold. These results demonstrate that two monomeric folds and two different functions can be encoded with only 12% of the amino acids in a protein (7 of 56). The fact that 49 aa in these proteins are compatible with both folds shows that the essential information determining a fold can be highly concentrated in a few amino acids and that a very limited subset of interactions in the protein can tip the balance from one monomer fold to another. This delicate balance helps explain why protein structure prediction is so challenging. Furthermore, because a few mutations can result in both new conformation and new function, the evolution of new folds driven by natural selection for alternative functions may be much more probable than previously recognized.Keywords
This publication has 43 references indexed in Scilit:
- Using Offset Recombinant Polymerase Chain Reaction To Identify Functional Determinants in a Common Family of Bacterial Albumin Binding DomainsBiochemistry, 2006
- Prediction and Functional Analysis of Native Disorder in Proteins from the Three Kingdoms of LifeJournal of Molecular Biology, 2004
- Exploring the conformational properties of the sequence space between two proteins with different folds: an experimental studyJournal of Molecular Biology, 1999
- NMRPipe: A multidimensional spectral processing system based on UNIX pipesJournal of Biomolecular NMR, 1995
- The Third IgG-Binding Domain from Streptococcal Protein GJournal of Molecular Biology, 1994
- Hydrogen-Deuterium Exchange in the Free and Immunoglobulin G-Bound Protein G B-DomainBiochemistry, 1994
- Determination of the solution structures of domains II and III of protein G from Streptococcus by 1H nuclear magnetic resonanceJournal of Molecular Biology, 1992
- 1.67-.ANG. X-ray structure of the B2 immunoglobulin-binding domain of streptococcal protein G and comparison to the NMR structure of the B1 domainBiochemistry, 1992
- Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperaturesBiochemistry, 1992