Abstract
We have found new hierarchies of Korteweg–de Vries and Boussinesq equations which have multiple soliton solutions. In contrast to the stan­dard hierarchy of K. de V. equations found by Lax, these equations do not appear to fit the present inverse formalism or possess the various pro­perties associated with it such as Bäcklund transformations. The most interesting of the new K. de V. equations is ( u nx ≡ ∂ n u /∂ x n ) ( u 4 x + 30 uu 2 x + 60 u 3 ) x + u t = 0. We have proved that this equation has N -soliton solutions but we have been able to find only two soliton solutions for the rest of this hierarchy. The above equation has higher conservation laws of rank 3, 4, 6 and 7 but none of rank 2, 5 and 8 and hence it would seem that an unusual series of conservation laws exists with every third one missing. Apart from the Boussinesq equation itself, which has N -soliton solutions, ( u xx + 6 u 2 ) xx + u xx u tt = 0 we have found only two-soliton solutions to the rest of this second class. The new equations have bounded oscillating solutions which do not occur for the K. de V. equation itself.