The formation of the double neutron star pulsar J0737--3039

Abstract
We find that the orbital period (2.4 hours), eccentricity (0.09), dipole magnetic field strength (6.9 x 10^9 Gauss) and spin period (22 ms) of the new highly relativistic double neutron star system PSR J0737-3039 can all be consistently explained if this system originated from a close helium star plus neutron star binary (HeS-NS) in which at the onset of the evolution the helium star had a mass in the range 4.0 to 6.5 M_sun and an orbital period in the range 0.1 to 0.2 days. Such systems are the post-Common-Envelope remnants of wide Be/X-ray binaries (orbital period ~ 100 to 1000 days) which consist of a normal hydrogen-rich star with a mass in the range 10 - 20 M_sun and a neutron star. The close HeS-NS progenitor system went through a phase of mass transfer by Roche-lobe overflow at a high rate lasting a few times 10^4 years; assuming Eddington-limited disk accretion onto the neutron star this star was spun up to its present rapid spin rate. At the moment of the second supernova explosion the He star had a mass in the range 2.3 to 3.3 M_sun and in order to obtain the present orbital parameters of PSR J0737-3039 a kick velocity in the range 70 - 230 km/s must have been imparted to the second neutron star at its birth.

This publication has 0 references indexed in Scilit: