Use of ESPI in hemodynamics: a means of visualizing vessel blood flow

Abstract
The successful development of total hip replacement as an effective surgical technique has been one of the most significant advances in modern orthopaedics. The method has superseded the traditional forms of treatment for hip fractures which involve extensive nailing across the site of the break. However, clinical experience has highlighted failures in both the implant and surrounding bone which have often been attributed to mechanical causes. The problem of optimizing the performance of an implant is very complex and includes a number of interrelated factors: fixation to the bone, strength of the prosthesis itself, wear of articulating surfaces, kinematic requirements, energy absorption, effect of implant position and bone structure in the surrounding area. This paper reports attempts to establish a test facility which can accurately model these parameters and monitor their effects with the intention of providing information for the orthopaedic field. Areas of interest that are intended to be examined include: the effect of bone preservation methods on the bone's strength and weight-bearing characteristics, the effects of medical conditions on bone strength, such as osteoporosis, and the effect of the patient's diet on bone character.

This publication has 0 references indexed in Scilit: