Inhibitor binding changes domain mobility in the iron–sulfur protein of the mitochondrial bc 1 complex from bovine heart

Abstract
We have analyzed crystal structures of cytochrome bc1 complexes with electron transfer inhibitors bound to the ubiquinone binding pockets Qi and/or Qo in the cytochrome b subunit. The presence or absence of the Qi inhibitor antimycin A did not affect the binding of the Qo inhibitors. Different subtypes of Qo inhibitors had dramatically different effects on the mobility of the extramembrane domain of the iron–sulfur protein (ISP): Binding of 5-undecyl-6-hydroxy-4,7-dioxobenzothiazol and stigmatellin (subtype Qo–II and Qo–III, respectively) led to a fixation of the ISP domain on the surface of cytochrome b, whereas binding of myxothiazol and methoxyacrylate-stilbene (subtype Qo–I) favored release of this domain. The native structure has an empty Qo pocket and is intermediate between these extremes. On the basis of these observations we propose a model of quinone oxidation in the bc1 complex, which incorporates fixed and loose states of the ISP as features important for electron transfer and, possibly, also proton transport.

This publication has 38 references indexed in Scilit: