Abstract
By means of similarity principles an analytical solution is constructed for the development of the linear flow field due to the instantaneous application of a constant point force in an infinite liquid. If the force is applied at the origin O and if ν denotes distance from O, ν denotes the coefficient of kinematic viscosity of the fluid and t the time from the application of the force, the solution constructed exhibits the following features. Initially the flow field set up has a dipole structure with centre at O and axis along the direction of the impressed force. At a station r this dipole structure persists so long as 4νt [Lt ] r2. In an axial cross-section the field lines form two sets of closed loops about two stagnation points in the equatorial plane. The stagnation points occur at r = 1.76(νt)½ and thus propagate to infinity with speed 0.88(ν/t)½. The steady state is reached algebraically.

This publication has 2 references indexed in Scilit: