In situ hybridization for the detection of human parvovirus B19 nucleic acid sequences in paraffin-embedded specimens

Abstract
Parvovirus infection of pregnant women leading to a transplacentar infection of the fetus may result in hydrops fetalis, and ultimately in intrauterine death of the fetus. In situ hybridization with a biotinylated as well as with a35S-labeled probe for human parvovirus B19 was performed on formalin-fixed paraffin-embedded (FFPE) tissue from a fetus suffering from non-immunologic hydrops fetalis. Histology was suggestive of viral infection probably with human parvovirus. Parvovirus DNA could be detected and precisely localized mainly in the nuclei of erythroid precursors cells within fetal blood vessels of all organs examined. There was no detection of B19 nucleic acid in parenchymal cells of the placenta or the fetal organs, nor within maternal blood cells. These findings are in agreement with the well-known properties of animal parvoviruses to replicate exclusively in proliferating cells. Taking into consideration the problems in diagnosing human parvovirus infection by light microscopy, we conclude that in situ hybridization with an appropriate non-radioactive probe is a valuable, rapid and safe complementary detection method for the diagnosis and study of human parvovirus infections. The35S-labeled probe is more sensitive than the biotinylated probe, but has the disadvantages of lower resolution of the signal, longer duration of the assay, the hazard of radioactivity and the shorter shelflife of the probe.