Pipelined adaptive DFE architectures

Abstract
Fine-grain pipelined adaptive decision-feedback equalizer (ADFE) architectures are developed using the relaxed look-ahead technique. This technique, which is an approximation to the conventional look-ahead computation, maintains functionality of the algorithm rather than the input-output behavior. Thus, it results in substantial hardware savings as compared to either parallel processing or look-ahead techniques. The delay relaxation, delay transfer relaxation, and sum relaxation are introduced for purposes of pipelining. Both the conventional and the predictor form of ADFE have been pipelined. The performance of the pipelined algorithms for the equalization of a magnetic recording channel is studied. It is demonstrated via simulations that, for a byte error rate of 10-7 or less, speed-ups of up to 8 can be easily achieved with the conventional ADFE. The predictor form of ADFE allows much higher speed-ups (up to 32) for less than 1 dB of SNR degradation.

This publication has 0 references indexed in Scilit: