The Stationary Bootstrap

Abstract
This article introduces a resampling procedure called the stationary bootstrap as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on weakly dependent stationary observations. Previously, a technique based on resampling blocks of consecutive observations was introduced to construct confidence intervals for a parameter of the m-dimensional joint distribution of m consecutive observations, where m is fixed. This procedure has been generalized by constructing a “blocks of blocks” resampling scheme that yields asymptotically valid procedures even for a multivariate parameter of the whole (i.e., infinite-dimensional) joint distribution of the stationary sequence of observations. These methods share the construction of resampling blocks of observations to form a pseudo-time series, so that the statistic of interest may be recalculated based on the resampled data set. But in the context of applying this method to stationary data, it is natural...

This publication has 0 references indexed in Scilit: