Local Administration of Serotonin Agonists Blocks Light-Induced Phase Advances of the Circadian Activity Rhythm in the Hamster

Abstract
Circadian rhythms in mammals are synchronized to environmental light-dark cycles through a direct retinal projection to the suprachiasmatic nucleus (SCN), a circadian clock. This process is thought to be modulated by other afferents to the SCN, including a dense serotonergic projection from the midbrain raphe. Previous work from this laboratory demonstrated that a systemically administered 5-hydroxytry ptamine1A/7 (5-HT1A/7) agonist 8-hydroxy-2-(di- n-propylamino)tetralin (8-OH-DPAT) dose dependently attenuates light-induced phase shifts of the circadian activity rhythm of the Syrian hamster. In this study, we demonstrate that local injections (1-100 μM) of the 5-HT1A/7 agonists 8-OH-DPAT or 5-carboxamidotryptamine into the region of the SCN inhibit light-induced phase advances of the circadian wheel-running rhythm. In addition, the inhibitory effects of systemically administered 8-OH-DPAT were unaffected by either radiofrequency-induced lesions of the intergeniculate leaflet or 5,7-dihydroxytryptamine-induced lesions of serotonergic projections to the SCN. These findings support a modulatory role of serotonin in photic regulation of circadian phase through an action at the level of the SCN.