The gating of nucleotide-sensitive K+ channels in insulin-secreting cells can be modulated by changes in the ratio ATP4−/ADP3− and by nonhydrolyzable derivatives of both ATP and ADP

Abstract
The31P-NMR technique has been used to assess the intracellular ratios and concentrations of mobile ATP and ADP and the intracellular pH in an insulin-secreting cell line, RINm5F. The single-channel current-recording technique has been used to investigate the effects of changes in the concentrations of ATP and ADP on the gating of nucleotide-dependent K+ channels. Adding ATP to the membrane inside closes these channels. However, in the continued presence of ATP adding ADP invariably leads to the reactivation of ATP-inhibited K+ channels, even at ATP4−/ADP3− concentration ratios greater than 7∶1. Interactions between ATP4− and ADP3− seem competitive. An increase in the concentration ratio ATP4−/ADP3− consistently evoked a decrease in the open-state probability of K+ channels; conversely a decrease in ATP4−/ADP3− increased the frequency of K+ channel opening events. Channel gating was also influenced by changes in the absolute concentrations of ATP4− and ADP3−, at constant free concentration ratios. ADP-evoked stimulation of ATP-inhibited channels did not result from phosphorylation of the channel, as ADP-β-S, a nonhydrolyzable analog of ADP, not only stimulated but enhanced ADP-induced activation of K+ channels, in the presence of ATP. Similarly, ADP was able to activate K+ channels in the presence of two nonhydrolyzable derivatives of ATP, AMP-PNP and βγmethylene ATP.