Morphological and histochemical comparison of the cells elicited by ectopic bone implants and tibial osteoclasts

Abstract
Pellets of mineralized and demineralized bone and a composite mixture of mineralized and demineralized, devitalized bone particles were implanted subcutaneously on the dorsal body wall of young adult rats. Two weeks post‐implantation, the pellets were removed and processed for histochemical and morphological analyses. Rat proximal tibia was also processed for evaluation. The levels of tartrate‐resistant acid phosphatase (TRAP) activity in the multinucleated giant cells (MNGCs) from each of the three implants and from osteoclasts were assessed using an image analyzer. The osteoclasts from the proximal tibia and the majority of MNGCs from the demineralized implants demonstrated high levels of TRAP activity. MNGCs from the mineralized implants showed either a low level or absence of TRAP activity. Most MNGCs from the composite implants exhibited a low level of TRAP activity; however, there was a population of cells that demonstrated a high level of reaction product, similar to that seen in the tibia and demineralized implant. Morphologically, osteoclasts from the proximal tibia and from the osteogenic demineralized implant exhibited ruffled borders. A small population of MNGCs from the composite implant also revealed osteoclastic features. In summary, MNGCs from the mineralized implant did not exhibit a level of TRAP reaction product or morphology similar to osteoclasts, while the majority of cells from the demineralized implant and a subpopulation of the MNGCs elicited by the composite implant did demonstrate TRAP expression and morphology similar to osteoclasts. The expression of osteoclastic characteristics in cells at an ectopic site may be dependent on accessory signals from the skeletal microenvironment; such signals appear to be absent from or incomplete in the mineralized implants but appear to be present when demineralized bone particles are implanted.