Abstract
A simple method is proposed to describe the thermodynamic properties of disordered grain boundaries in nanocrystalline metals and semiconductors. Based on a free-volume approach at negative pressure of the universal equation of state, the maximum free volume, thermal expansion coefficient, specific-heat capacity, and excess enthalpy, entropy, and free energy of grain boundaries are derived from well-known thermodynamic relationships. The results show good agreement with available experimental data and suggest an intrinsic mechanical instability of a nanograin boundary (Gibbs instability) accompanied by divergences of α and cp, and the possibility of an entropy stabilization of nanograin boundaries.